Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.426
Filtrar
1.
Biodes Res ; 6: 0031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572349

RESUMO

Protein engineering aimed at increasing temperature tolerance through iterative mutagenesis and high-throughput screening is often labor-intensive. Here, we developed a deep evolution (DeepEvo) strategy to engineer protein high-temperature tolerance by generating and selecting functional sequences using deep learning models. Drawing inspiration from the concept of evolution, we constructed a high-temperature tolerance selector based on a protein language model, acting as selective pressure in the high-dimensional latent spaces of protein sequences to enrich those with high-temperature tolerance. Simultaneously, we developed a variant generator using a generative adversarial network to produce protein sequence variants containing the desired function. Afterward, the iterative process involving the generator and selector was executed to accumulate high-temperature tolerance traits. We experimentally tested this approach on the model protein glyceraldehyde 3-phosphate dehydrogenase, obtaining 8 variants with high-temperature tolerance from just 30 generated sequences, achieving a success rate of over 26%, demonstrating the high efficiency of DeepEvo in engineering protein high-temperature tolerance.

2.
Crit Rev Immunol ; 44(5): 59-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618729

RESUMO

We investigated the potential arthritis-inducing effects of Phillygenin and its underlying mechanisms. RAW264.7 cells were stimulated with lipopolysaccharide to induce inflammation. Phillygenin was found to reduce arthritis score, histopathological changes, paw edema, spleen index, and ALP levels in a dose-dependent manner in a model of arthritis. Additionally, Phillygenin was able to decrease levels of inflammation markers in serum samples of mice with arthritis and also inhibited inflammation markers in the cell supernatant of an in vitro model of arthritis. Phillygenin increased cell viability and JC-1 disaggregation, enhanced calcien-AM/CoCl2, reduced LDH activity levels and IL-1a levels, and inhibited Calcein/PI levels and iron concentration in an in vitro model. Phillygenin was also found to reduce ROS-induced oxidative stress and Ferroptosis, and suppress the NLRP3 inflammasome in both in vivo and in vitro models through AMPK. In the in vivo model, Phillygenin was observed to interact with AMPK protein. These findings suggest that Phillygenin may be a potential therapeutic target for preventing arthritis by inhibiting NLRP3 inflammasome and Ferroptosis through AMPK. This indicates that Phillygenin could have disease-modifying effects on arthritis.


Assuntos
Artrite , Ferroptose , Lignanas , Humanos , Animais , Camundongos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases Ativadas por AMP , Inflamação
3.
Brain Res ; : 148947, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657887

RESUMO

Perceived stress is an acknowledged risk factor for subthreshold depression (StD), and fluctuations in perceived stress are thought to disrupt the harmony of brain networks essential for emotional and cognitive functioning. This study aimed to elucidate the relationship between eye-open (EO) and eye-closed (EC) states, perceived stress, and StD. We recruited 27 individuals with StD and 33 healthy controls, collecting resting state fMRI data under both EC and EO conditions. We combined intrinsic connectivity and seed-based functional connectivity analyses to construct the functional network and explore differences between EC and EO conditions. Graph theory analysis revealed weakened connectivity strength in the right superior frontal gyrus (SFG) and right median cingulate and paracingulate gyrus (MCC) among participants with StD, suggesting an important role for these regions in the stress-related emotions dysregulation. Notably, altered SFG connectivity was observed to significantly relate to perceived stress levels in StD, and the SFG connection emerges as a neural mediator potentially influencing the relationship between perceived stress and StD. These findings highlight the role of SFG and MCC in perceived stress and suggest that understanding EC and EO states in relation to these regions is important in the neurobiological framework of StD. This may offer valuable perspectives for early prevention and intervention strategies in mental health disorders.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38659261

RESUMO

BACKGROUND: Honokiol is a natural polyphenolic compound extracted from Magnolia officinali, which is commonly used material in Chinese herbal medicine, has a variety of biological functions, including anti-tumor, anti-oxidant, anti-inflammation, anti-microbial and anti-allergy. Although honokiol has numerous beneficial effects on human diseases, the underlying mechanisms of tumor metastasis are still unclear. Previously, we reported that honokiol suppresses thyroid cancer cell proliferation with cytotoxicity through cell cycle arrest, apoptosis, and dysregulation of intracellular hemostasis. Herein, we hypothesized that the antioxidant effect of honokiol might play a critical role in thyroid cancer cell proliferation and migration. METHODS: The cell viability assays, cellular reactive oxygen species (ROS) activity, cell migration, and immunoblotting were performed after cells were treated with honokiol. RESULTS: Based on this hypothesis, we first demonstrated that honokiol suppresses cell proliferation in two human anaplastic thyroid carcinoma (ATC) cell lines, KMH-2 and ASH-3, within a dosage- and time-dependent manner by cell counting kit-8 (CCK-8) assay. Next, we examined that honokiol induced ROS activation and could be suppressed by pre-treated with an antioxidant agent, N-acetyl-l-cysteine (NAC). Furthermore, the honokiol suppressed cell proliferation can be rescued by pre-treated with NAC. Finally, we demonstrated that honokiol inhibited ATC cell migration by modulating epithelial-mesenchymal transition (EMT)-related markers by Western blotting. CONCLUSION: Taken together, we provided the potential mechanism for treating ATC cells with honokiol, which significantly suppresses tumor proliferation and inhibits tumor metastasis in vitro through reactive oxygen species (ROS) induction.

5.
Drug Des Devel Ther ; 18: 747-766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495630

RESUMO

Purpose: Type 2 diabetes mellitus (T2DM) is associated with reduced insulin uptake and glucose metabolic capacity. Potentilla discolor Bunge (PDB) has been used to treat T2DM; however, the fundamental biological mechanisms remain unclear. This study aimed to understand the active ingredients, potential targets, and underlying mechanisms through which PDB treats T2DM. Methods: Components and action targets were predicted using network pharmacology and molecular docking analyses. PDB extracts were prepared and validated through pharmacological intervention in a Cg>InRK1409A diabetes Drosophila model. Network pharmacology and molecular docking analyses were used to identify the key components and core targets of PDB in the treatment of T2DM, which were subsequently verified in animal experiments. Results: Network pharmacology analysis revealed five effective compounds made up of 107 T2DM-related therapeutic targets and seven protein-protein interaction network core molecules. Molecular docking results showed that quercetin has a strong preference for interleukin-1 beta (IL1B), IL6, RAC-alpha serine/threonine-protein kinase 1 (AKT1), and cellular tumor antigen p53; kaempferol exhibited superior binding to tumor necrosis factor and AKT1; ß-sitosterol demonstrated pronounced binding to Caspase-3 (CASP3). High-performance liquid chromatography data quantified quercetin, kaempferol, and ß-sitosterol at proportions of 0.030%, 0.025%, and 0.076%, respectively. The animal experiments revealed that PDB had no effect on the development, viability, or fertility of Drosophila and it ameliorated glycolipid metabolism disorders in the diabetes Cg>InRK1409A fly. Furthermore, PDB improved the body size and weight of Drosophila, suggesting its potential to alleviate insulin resistance. Moreover, PDB improved Akt phosphorylation and suppressed CASP3 activity to improve insulin resistance in Drosophila with T2DM. Conclusion: Our findings suggest that PDB ameliorates diabetes metabolism disorders in the fly model by enhancing Akt activity and suppressing CASP3 expression. This will facilitate the development of key drug targets and a potential therapeutic strategy for the clinical treatment of T2DM and related metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Potentilla , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Caspase 3 , Quempferóis , Drosophila , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Quercetina
6.
Front Genet ; 15: 1339064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533208

RESUMO

Introduction: Pulmonary fibrosis (PF), a type of interstitial pneumonia with complex etiology and high mortality, is characterized by progressive scarring of the alveolar interstitium and myofibroblastic lesions. In this study, we screened for potential biomarkers in PF and clarified the role of the lncRNA-miRNA-mRNA ceRNA network in the inhibitory effect of SRL-4 on PF. Methods: Healthy male SPF SD rats were randomly divided into three groups, namely, CON, MOD, and SRL-4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to determine the biological functions of the target genes. A visualized lncRNA-miRNA-mRNA ceRNA network was constructed using Cytoscape, while key genes in the network were identified using the cytoNCA plugin. Results: Seventy-four differentially expressed lncRNAs and 118 differentially expressed mRNAs were identified. Gene Ontology analysis revealed that the target genes were mainly enriched in the cell membrane and in response to organic substances, while Kyoto Encyclopedia of Genes and Genomes analysis showed that the target genes were mainly enriched in the AMPK, PPAR, and cAMP signaling pathways. We elucidated a ceRNA axis, namely, Plcd3-OT1/rno-miR-150-3p/Fkbp5, with potential implications in PF. Key genes, such as AABR07051308.1-201, F2rl2-OT1, and LINC3337, may be important targets for the treatment of PF, while the AMPK, PPAR, and cAMP signaling pathways are potential key targets and important pathways through which SRL-4 mitigates PF. Conclusion: Our findings suggest that SRL-4 improves PF by regulating the lncRNA-miRNA-mRNA network.

7.
Chemosphere ; 354: 141598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432464

RESUMO

Steroid hormones (SHs) have attracted mounting attention due to their endocrine-disrupting effects on humans and aquatic organisms. However, the lack of analytical methods and toxicity data for a large number of SHs has limited the effective management of SH contamination in the water-sediment systems. In this study, we developed a highly sensitive analytical method for the simultaneous quantification of 144 SHs to investigate their occurrence, spatial distribution and partitioning in the water and sediment in Taihu Lake. The results showed that the total concentrations of SHs in water and sediment were 366.88-998.23 ng/L (mean: 612.84 ng/L) and 17.46-150.20 ng/g (mean: 63.41 ng/g), respectively. The spatial distribution of SHs in Taihu Lake might be simultaneously influenced by the pollution sources, lake hydrodynamics, and sediment properties. The sediment-water partitioning result implied that 28 SHs were in dynamic equilibrium at the water-water interface. In addition, 22 and 12 SHs tended to spread to water and settle into sediment, respectively. To assess the ecological risk of all SHs, a robust random forest model (R2 = 0.801) was developed to predict the acute toxicity of SHs for which toxicity data were not available from publications. Risk assessment showed that SHs posed a high ecological risk throughout Taihu Lake, with the highest risk in the northwestern areas. Estrone, 17ß-estradiol and 17α-ethynylestradiol were the dominant risk contributors and were therefore recommended as the priority SHs in Taihu Lake. This work provided a valuable dataset for Taihu Lake, which would help to provide guidance and suggestions for future studies and be useful for the government to develop the mitigation and management measures.


Assuntos
Lagos , Poluentes Químicos da Água , Humanos , Lagos/análise , Cromatografia Líquida , 60705 , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Espectrometria de Massas em Tandem , Água , Medição de Risco , Estradiol , Estrona , China , Sedimentos Geológicos
8.
Artif Cells Nanomed Biotechnol ; 52(1): 201-217, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38488151

RESUMO

The main purpose of this study was to explore the changes of biomarkers in different developmental stages of bleomycin-induced pulmonary fibrosis (PF) in rats via comprehensive pathophysiology, UPLC-QTOF/MS metabonomic technology, and 16S rRNA gene sequencing of intestinal microbiota. The rats were randomly divided into normal control and 1-, 2- and 4-week model group. The rat model of PF was established by one-time intratracheal instillation of bleomycin. The levels of inflammatory and fibrosis-related factors such as hydroxyproline (HYP), type III procollagen (COL-III), type IV collagen (COL-IV), hyaluronidase (HA), laminin (LN), interleukin (IL)-1ß, IL-6, malondialdehyde (MDA) increased and superoxide dismutase (SOD) decreased as the PF cycle progressed. In the 1-, 2- and 4-week model group, 2, 19 and 18 potential metabolic biomarkers and 3, 16 and 12 potential microbial biomarkers were detected, respectively, which were significantly correlated. Glycerophospholipid metabolism pathway was observed to be an important pathway affecting PF at 1, 2 and 4 weeks; arginine and proline metabolism pathways significantly affected PF at 2 weeks. Linoleic acid metabolism pathway exhibited clear metabolic abnormalities at 2 and 4 weeks of PF, and alpha-linolenic acid metabolism pathway significantly affected PF at 4 weeks.


In this study, metabolomics technology and intestinal microbiota 16S rRNA gene sequencing were used to search for biomarkers with significant differences in each stage of pulmonary fibrosis. Finally, the variation characteristics of each stage of the disease were discussed. The hope is to provide new insights into the development of diagnostic biomarkers and potential therapeutic targets at all stages.


Assuntos
Microbioma Gastrointestinal , Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , RNA Ribossômico 16S , Bleomicina/efeitos adversos , Biomarcadores
9.
J Cell Mol Med ; 28(6): e18163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445776

RESUMO

Malic enzyme (ME) genes are key functional metabolic enzymes playing a crucial role in carcinogenesis. However, the detailed effects of ME gene expression on breast cancer progression remain unclear. Here, our results revealed ME1 expression was significantly upregulated in breast cancer, especially in patients with oestrogen receptor/progesterone receptor-negative and human epidermal growth factor receptor 2-positive breast cancer. Furthermore, upregulation of ME1 was significantly associated with more advanced pathological stages (p < 0.001), pT stage (p < 0.001) and tumour grade (p < 0.001). Kaplan-Meier analysis revealed ME1 upregulation was associated with poor disease-specific survival (DSS: p = 0.002) and disease-free survival (DFS: p = 0.003). Multivariate Cox regression analysis revealed ME1 upregulation was significantly correlated with poor DSS (adjusted hazard ratio [AHR] = 1.65; 95% CI: 1.08-2.52; p = 0.021) and DFS (AHR, 1.57; 95% CI: 1.03-2.41; p = 0.038). Stratification analysis indicated ME1 upregulation was significantly associated with poor DSS (p = 0.039) and DFS (p = 0.038) in patients with non-triple-negative breast cancer (TNBC). However, ME1 expression did not affect the DSS of patients with TNBC. Biological function analysis revealed ME1 knockdown could significantly suppress the growth of breast cancer cells and influence its migration ability. Furthermore, the infiltration of immune cells was significantly reduced when they were co-cultured with breast cancer cells with ME1 knockdown. In summary, ME1 plays an oncogenic role in the growth of breast cancer; it may serve as a potential biomarker of progression and constitute a therapeutic target in patients with breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Mama , Carcinogênese , Técnicas de Cocultura , Intervalo Livre de Doença
10.
J Transl Med ; 22(1): 261, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461333

RESUMO

BACKGROUND: The mitochondria and endoplasmic reticulum (ER) communicate via contact sites known as mitochondria associated membranes (MAMs). Many important cellular functions such as bioenergetics, mitophagy, apoptosis, and calcium signaling are regulated by MAMs, which are thought to be closely related to ischemic reperfusion injury (IRI). However, there exists a gap in systematic proteomic research addressing the relationship between these cellular processes. METHODS: A 4D label free mass spectrometry-based proteomic analysis of mitochondria associated membranes (MAMs) from the human renal proximal tubular epithelial cell line (HK-2 cells) was conducted under both normal (N) and hypoxia/reperfusion (HR) conditions. Subsequent differential proteins analysis aimed to characterize disease-relevant signaling molecules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was applied to total proteins and differentially expressed proteins, encompassing Biological Process (BP), Cell Component (CC), Molecular Function (MF), and KEGG pathways. Further, Protein-Protein Interaction Network (PPI) exploration was carried out, leading to the identification of hub genes from differentially expressed proteins. Notably, Mitofusion 2 (MFN2) and BCL2/Adenovirus E1B 19-kDa interacting protein 3(BNIP3) were identified and subsequently validated both in vitro and in vivo. Finally, the impact of MFN2 on MAMs during hypoxia/reoxygenation was explored through regulation of gene expression. Subsequently, a comparative proteomics analysis was conducted between OE-MFN2 and normal HK-2 cells, providing further insights into the underlying mechanisms. RESULTS: A total of 4489 proteins were identified, with 3531 successfully quantified. GO/KEGG analysis revealed that MAM proteins were primarily associated with mitochondrial function and energy metabolism. Differential analysis between the two groups showed that 688 proteins in HR HK-2 cells exhibited significant changes in expression level with P-value < 0.05 and HR/N > 1.5 or HR/N < 0.66 set as the threshold criteria. Enrichment analysis of differentially expressed proteins unveiled biological processes such as mRNA splicing, apoptosis regulation, and cell division, while molecular functions were predominantly associated with energy metabolic activity. These proteins play key roles in the cellular responses during HR, offering insights into the IRI mechanisms and potential therapeutic targets. The validation of hub genes MFN2 and BNIP3 both in vitro and vivo was consistent with the proteomic findings. MFN2 demonstrated a protective role in maintaining the integrity of mitochondria associated membranes (MAMs) and mitigating mitochondrial damage following hypoxia/reoxygenation injury, this protective effect may be associated with the activation of the PI3K/AKT pathway. CONCLUSIONS: The proteins located in mitochondria associated membranes (MAMs) are implicated in crucial roles during renal ischemic reperfusion injury (IRI), with MFN2 playing a pivotal regulatory role in this context.


Assuntos
60482 , Traumatismo por Reperfusão , Humanos , Fosfatidilinositol 3-Quinases , Proteômica , Hipóxia
11.
Front Plant Sci ; 15: 1358673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410731

RESUMO

Cadmium (Cd) pollution severely affects plant growth and development, posing risks to human health throughout the food chain. Improved iron (Fe) nutrients could mitigate Cd toxicity in plants, but the regulatory network involving Cd and Fe interplay remains unresolved. Here, a transcription factor gene of alfalfa, MsbHLH115 was verified to respond to iron deficiency and Cd stress. Overexpression of MsbHLH115 enhanced tolerance to Cd stress, showing better growth and less ROS accumulation in Arabidopsis thaliana. Overexpression of MsbHLH115 significantly enhanced Fe and Zn accumulation and did not affect Cd, Mn, and Cu concentration in Arabidopsis. Further investigations revealed that MsbHLH115 up-regulated iron homeostasis regulation genes, ROS-related genes, and metal chelation and detoxification genes, contributing to attenuating Cd toxicity. Y1H, EMSA, and LUC assays confirmed the physical interaction between MsbHLH115 and E-box, which is present in the promoter regions of most of the above-mentioned iron homeostasis regulatory genes. The transient expression experiment showed that MsbHLH115 interacted with MsbHLH121pro. The results suggest that MsbHLH115 may directly regulate the iron-deficiency response system and indirectly regulate the metal detoxification response mechanism, thereby enhancing plant Cd tolerance. In summary, enhancing iron accumulation through transcription factor regulation holds promise for improving plant tolerance to Cd toxicity, and MsbHLH115 is a potential candidate for addressing Cd toxicity issues.

12.
Heliyon ; 10(3): e25446, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322971

RESUMO

Photoelectrochemical water splitting via solar irradiation has garnered significant interest due to its potential in large-scale renewable hydrogen production. Heterostructure materials have emerged as an effective strategy, demonstrating enhanced performance in photoelectrochemical water-splitting applications compared to individual photocatalysts. In this study, to augment the performance of sprayed TiVO4 thin films, a hydrothermally prepared WO3 underlayer was integrated beneath the spray pyrolised TiVO4 film. The consequent heterostructure demonstrated notable enhancements in optical, structural, microstructural attributes, and photocurrent properties. This improvement is attributed to the strategic deposition of WO3 underlayer, forming a heterostructure composite electrode. This led to a marked increase in photocurrent density for the WO3/TiVO4 photoanode, reaching a peak of 740 µA/cm2 at an applied potential of 1.23 V vs RHE, about nine-fold that of standalone TiVO4. Electrochemical impedance spectroscopy revealed a reduced semicircle for the heterostructure, indicating improved charge transfer compared to bare TiVO4. The heterostructure photoelectrode exhibited enhanced charge carrier conductivity at the interface and sustained stability over 3 h. The distinct attributes of heterostructure photoelectrode present significant opportunities for devising highly efficient sunlight-driven water-splitting systems.

13.
Nanomaterials (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334530

RESUMO

Critical to boosting photoelectrochemical (PEC) performance is improving visible light absorption, accelerating carrier separation, and reducing electron-hole pair recombination. In this investigation, the PVD/RF method was employed to fabricate WO3 thin films that were subsequently treated using the surface treatment process, and the film surface was modified by introducing varying concentrations of cobalt nanoparticles, a non-noble metal, as an effective Co catalyst. The results show that the impact of loaded cobalt nanoparticles on the film surface can explain the extended absorption spectrum of visible light, efficiently capturing photogenerated electrons. This leads to an increased concentration of charge carriers, promoting a faster rate of carrier separation and enhancing interface charge transfer efficiency. Compared with a pristine WO3 thin film photoanode, the photocurrent of the as-prepared Co/WO3 films shows a higher PEC activity, with more than a one-fold increase in photocurrent density from 1.020 mA/cm2 to 1.485 mA/cm2 under simulated solar radiation. The phase, crystallinity, and surface of the prepared films were analysed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The PVD/RF method, scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) were employed to assess the surface morphology of the fabricated film electrode. Optical properties were studied using UV-vis absorbance spectroscopy. Simultaneously, the photoelectrochemical properties of both films were evaluated using linear sweep voltammetry and electrochemical impedance spectroscopy (EIS). These results offer a valuable reference for designing high-performance photoanodes on a large scale for photoelectrochemical (PEC) applications.

14.
BMC Urol ; 24(1): 29, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310213

RESUMO

OBJECTIVE: To compare the outcomes of patients undergoing Retroperitoneal laparoscopic Radical nephrectomy (RLRN) and Transperitoneal laparoscopic Radical nephrectomy (TLRN). METHODS: A total of 120 patients with localized renal cell carcinoma were randomized into either RLRN or TLRN group. Mainly by comparing the patient perioperative related data, surgical specimen integrity, pathological results and tumor results. RESULTS: Each group comprised 60 patients. The two group were equivalent in terms of perioperative and pathological outcomes. The mean integrity score was significantly lower in the RLRN group than TLRN group. With a median follow-up of 36.4 months after the operation, Kaplan-Meier survival analysis showed no significant difference between RLRN and TLRN in overall survival (89.8% vs. 88.5%; P = 0.898), recurrence-free survival (77.9% vs. 87.7%; P = 0.180), and cancer-specific survival (91.4% vs. 98.3%; P = 0.153). In clinical T2 subgroup, the recurrence rate and recurrence-free survival in the RLRN group was significantly worse than that in the TLRN group (43.2% vs. 76.7%, P = 0.046). Univariate and multivariate COX regression analysis showed that RLRN (HR: 3.35; 95%CI: 1.12-10.03; P = 0.030), male (HR: 4.01; 95%CI: 1.07-14.99; P = 0.039) and tumor size (HR: 1.23; 95%CI: 1.01-1.51; P = 0.042) were independent risk factor for recurrence-free survival. CONCLUSIONS: Our study showed that although RLRN versus TLRN had roughly similar efficacy, TLRN outperformed RLRN in terms of surgical specimen integrity. TLRN was also significantly better than RLRN in controlling tumor recurrence for clinical T2 and above cases. TRIAL REGISTRATION: Chinese Clinical Trial Registry ( https://www.chictr.org.cn/showproj.html?proj=24400 ), identifier: ChiCTR1800014431, date: 13/01/2018.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Laparoscopia , Humanos , Masculino , Neoplasias Renais/patologia , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia , Recidiva Local de Neoplasia/cirurgia , Nefrectomia/métodos , Carcinoma de Células Renais/patologia , Laparoscopia/métodos , Estudos Retrospectivos
15.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324775

RESUMO

Chlorinated paraffins (CPs) are manufactured and used in high quantities and have diverse structural analogues. It is generally recognized that sulfur-containing structural analogues of CPs are mainly derived from sulfate-conjugated phase II metabolism. In this study, we non-targeted identified three classes of sulfur-containing CP structural analogues (CPs-S) in human serum, including 44 CP sulfates (CPs-SO4H/CPs-SO4H-OH), 14 chlorinated benzene sulfates (CBs-SO4H), and 19 CP sulfite esters (CPs-SO3/CPs-S2O6), which were generated during the production of commercial mixtures of CPs and, thus, bioaccumulated via environmental exposures. We first wrote a program to screen CPs-S, which were baseline-separated from CPs according to their polar functional groups. Then, mass spectral analyses of alkalization-acidification liquid-liquid extracts of serum samples and Orbitrap mass spectrometry analyses in the presence and absence of tetraphenylphosphonium chloride (Ph4PCl), respectively, were performed to determine the ionization forms ([M + Cl]- or [M - H]-) of CPs-S. The presence of fragment ions (SO4H-, SO3-, SO2Cl-, and HSO3-) revealed the structures of CPs-S, which were validated by their detections in commercial mixtures of CPs. The estimated total concentrations of CPs-S in the human serum samples were higher than the concentrations of medium- and long-chain CPs. The profiles of CPs-S in human serum were similar to those detected in CP commercial mixtures and rats exposed to the commercial mixtures, but CPs-S were not detected in human liver S9 fractions or rat tissues after exposure to CP standards. These results, together with the knowledge of the processes used to chemically synthesize CPs, demonstrate that CPs-S in humans originates from environmental bioaccumulation.

16.
Biochem Genet ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349440

RESUMO

Hyperlipidemia is an independent risk factor for cardiovascular and cerebrovascular diseases. The transcriptomic data and the gene regulatory networks of hyperlipidemia are largely unclear. We analyzed the changes in liver gene expression and the serum levels of biochemical indicators in rats with hyperlipidemia induced by high-fat diet (HFD). The body weight, liver weight, and the serum levels of TG, TC, HDL-C, LDL-C, ALT, and AST were significantly higher in the hyperlipidemic rats compared to the healthy controls (P < 0.05). In addition, HFD feeding decreased the antioxidant capacity of the liver tissues and significantly increased the arteriosclerosis index (AI) (P < 0.05). There were 584 differentially expressed genes (DEGs) in the hyperlipidemia model compared to the control, with |log2FC|≥ 1 and P-adjust ≤ 0.05 as the thresholds. GO analysis of the DEGs revealed significant enrichment of 382 biological processes (BP), 18 cellular components (CC), and 40 molecular functions (MF). In addition, pathways related to bile secretion, cholesterol metabolism, and steroid hormone biosynthesis were significantly associated with hyperlipidemia. The key genes potentially involved in the blood lipid changes were Agt, Src, Gnai3, Cyp2c7, Cyp2c11, Cyp2c22, Apoa1, Apoe, and Srebf1. The genes and pathways identified in this study are potential intervention targets for hyperlipidemia and warrant further investigation.

17.
Phytomedicine ; 126: 155444, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367423

RESUMO

BACKGROUND: Stomach diseases have become global health concerns. Protoberberine alkaloids (PBAs) are a group of quaternary isoquinoline alkaloids from abundant natural sources and have been shown to improve gastric disorders in preclinical and clinical studies. The finding that PBAs exhibit low oral bioavailability but potent pharmacological activity has attracted great interest. PURPOSE: This review aims to provide a systematic review of the molecular mechanisms of PBAs in the treatment of gastric disorders and to discuss the current understanding of the pharmacokinetics and toxicity of PBAs. METHODS: The articles related to PBAs were collected from the Web of Science, Pubmed, and China National Knowledge Infrastructure databases using relevant keywords. The collected articles were screened and categorized according to their research content to focus on the gastroprotective effects, pharmacokinetics, and toxicity of PBAs. RESULTS: Based on the results of preclinical studies, PBAs have demonstrated therapeutic effects on chronic atrophic gastritis and gastric cancer by activating interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6) pathway and suppressing transforming growth factor-beta 1 (TGF-ß1)/phosphoinositide 3-kinase (PI3K), Janus kinase-2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) pathways. The major PBAs exhibit similar pharmacokinetic properties, including rapid absorption, slow elimination, and low bioavailability. Notably, the natural organ-targeting property of PBAs may account for the finding of their low blood levels and high pharmacological activity. PBAs interact with other compounds, including conventional drugs and natural products, by modulation of metabolic enzymes and transporters. The potential tissue toxicity of PBAs should be emphasized due to their high tissue accumulation. CONCLUSION: This review highlights the gastroprotective effects, pharmacokinetics, and toxicity of PBAs and will contribute to the evaluation of drug properties and clinical translational studies of PBAs, accelerating their transfer from the laboratory to the bedside.


Assuntos
Alcaloides , Alcaloides de Berberina , Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Alcaloides/farmacologia , Alcaloides/química , Alcaloides de Berberina/farmacologia , Medicamentos de Ervas Chinesas/farmacologia
18.
Heliyon ; 10(4): e25495, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384563

RESUMO

Introduction: Knee osteoarthritis (KOA) is a type of joint disease causing degenerative changes that are challenging to treat. The improved tug-of-war acupuncture (BHZF) can improve joint pain in KOA. However, the associated mechanism has not been validated. Methods: The KOA rabbit model was established. After the surgery, the improved BHZF was provided as an intervention, and the animals were euthanized after 2 weeks. Histopathological changes in the synovium and cartilage were observed on hematoxylin & eosin staining and Safranin O-Fast Green staining. Synovial fluid and serum samples were collected to assess the presence of cytokines using the enzyme-linked immunosorbent assay. The expression of M1 macrophage (CD86) and M2 macrophage (ARG1) markers in the cartilage and synovium was detected via immunohistochemistry and immunofluorescence assays. Results: The improved BHZF could reduce KOA-related pain and inhibit joint swelling. Further, it significantly maintained the morphology of articular chondrocytes in KOA and reduced the decomposition of the cartilage matrix. Then, it significantly reduced the expression of CD86-positive cells (P < 0.05), and increased the expression of ARG1-positive cells in the cartilage and synovium (P < 0.05). Moreover, it significantly decreased the expression of inflammatory factors interleukin (IL)-1 beta and tumor necrosis factor-alpha in the serum and synovial fluid (P < 0.05), and significantly increased the expression levels of anti-inflammatory cytokines IL-4 and IL-10 (P < 0.05). Conclusions: The improved BHZF can relieve pain and improve cartilage damage by regulating macrophage polarization in KOA.

19.
Blood Adv ; 8(7): 1760-1771, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38286462

RESUMO

ABSTRACT: The proposed fifth edition of the World Health Organization classification of hematolymphoid tumors (WHO-HAEM5) and International Consensus Classification (ICC) provide different definitions of acute myeloid leukemia with myelodysplasia-related genetics (AML-MR). We conducted a retrospective study which included a cohort of 432 patients, with 354 patients fulfilling WHO-HAEM5 criteria for WHO-AML-MR or 276 patients fulfilling ICC criteria for ICC-AML-MR by gene mutation or cytogenetics (ICC-AML-MR-M/CG). The clinicopathological features were largely similar, irrespective of the classification used, except for higher rates of complex karyotype, monosomy 17, TP53 mutations, and fewer RUNX1 mutations in the WHO-AML-MR group. TP53 mutations were associated with distinct clinicopathological features and dismal outcomes (hazard ratio [HR], 2.98; P < .001). ICC-AML-MR-M/CG group had superior outcome compared with the WHO-AML-MR group (HR, 0.80, P = .032), largely in part due to defining TP53 mutated AML as a standalone entity. In the intensively-treated group, WHO-AML-MR had significantly worse outcomes than AML by differentiation (HR, 1.97; P = .024). Based on ICC criteria, ICC-AML-MR-M/CG had more inferior outcomes compared to AML not otherwise specified (HR, 2.11; P = .048 and HR, 2.55; P = .028; respectively). Furthermore, changing the order of genetic abnormalities defining AML-MR (ie, by gene mutations or cytogenetics) did not significantly affect clinical outcomes. ICC-AML-MR-M/CG showed similar outcomes regardless of the order of assignment. We propose to harmonize the 2 classifications by excluding TP53 mutations from WHO-HAEM5 defined AML-MR group and combining AML-MR defined by gene mutations and cytogenetics to form a unified group.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Estudos Retrospectivos , Consenso , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Organização Mundial da Saúde
20.
Small ; : e2307728, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263806

RESUMO

Herein, the structure of integrated M3D inverters are successfully demonstrated where a chemical vapor deposition (CVD) synthesized monolayer WSe2 p-type nanosheet FET is vertically integrated on top of CVD synthesized monolayer MoS2 n-type film FET arrays (2.5 × 2.5 cm) by semiconductor industry techniques, such as transfer, e-beam evaporation (EBV), and plasma etching processes. A low temperature (below 250 °C) is employed to protect the WSe2 and MoS2 channel materials from thermal decomposition during the whole fabrication process. The MoS2 NMOS and WSe2 PMOS device fabricated show an on/off current ratio exceeding 106 and the integrated M3D inverters indicate an average voltage gain of ≈9 at VDD = 2 V. In addition, the integrated M3D inverter demonstrates an ultra-low power consumption of 0.112 nW at a VDD of 1 V. Statistical analysis of the fabricated inverters devices shows their high reliability, rendering them suitable for large-area applications. The successful demonstration of M3D inverters based on large-scale 2D monolayer TMDs indicate their high potential for advancing the application of 2D TMDs in future integrated circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...